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3. Returning to toroidal geometry

4. Summary



Plasma losses

▶ Turbulent transport is expected to be the dominant mechanism of heat and
particle losses in tokamaks, as well as neoclassically optimised stellarators.

1 / 16



Plasma losses

▶ Turbulent transport is expected to be the dominant mechanism of heat and
particle losses in tokamaks, as well as neoclassically optimised stellarators.

Figure 1: STEP equilibria from Kennedy et al. (2023)

1 / 16



Plasma losses

▶ Turbulent transport is expected to be the dominant mechanism of heat and
particle losses in tokamaks, as well as neoclassically optimised stellarators.

Figure 1: STEP equilibria from Kennedy et al. (2023)

▶ Radial gradient of the plasma pressure is a source of free-energy for
unstable perturbations, typically on scales comparable to the particle gyroradii

k∥L ∼ 1, k⊥ρs ∼ 1 ⇒
k∥
k⊥

∼ ρs
L

≪ 1 ⇒ gyrokinetics
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Plasma losses

▶ Turbulent transport is expected to be the dominant mechanism of heat and
particle losses in tokamaks, as well as neoclassically optimised stellarators.

Figure 1: STEP equilibria from Kennedy et al. (2023)

▶ Radial gradient of the plasma pressure is a source of free-energy for
unstable perturbations, typically on scales comparable to the particle gyroradii

▶ Understanding the microinstability properties of tokamak plasmas, and the
resultant turbulence, is key to successful reactor design.

1 / 16



Electromagnetic fluctuations

▶ Electromagnetic fluctuations will be larger in reactor-relevant tokamak
scenarios due to a higher values of the plasma beta:

βs =
thermal pressure

magnetic pressure
=

8πn0sT0s

B2
0

.
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Electromagnetic fluctuations

▶ Electromagnetic fluctuations will be larger in reactor-relevant tokamak
scenarios due to a higher values of the plasma beta:

βs =
thermal pressure

magnetic pressure
=

8πn0sT0s

B2
0

.

▶ This is particularly true for spherical-tokamak (ST) designs, e.g., MAST,
STEP, NSTX-U, and ST40.

Figure 2: From Costley (2019)
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ST confinement scaling

Figure 3: From Valovič et al. (2011) (left), Kaye et al. (2013) (right)
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BτE ∼ ν−0.8±0.1
∗
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ST confinement scaling

Figure 3: From Valovič et al. (2011) (left), Kaye et al. (2013) (right)

▶ Experimental MAST and NSTX data demonstrated a favourable scaling of
confinement time with normalised collisionality:

BτE ∼ ν−0.8±0.1
∗

▶ Shown to be consistent with the stabilisation of core micro-tearing modes,
and a subsequent reduction in electron turbulent transport, at lower ν∗.
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(MTM)

or
kinetic ballooning mode

(KBM)

▶ Nonlinear simulations of local gyrokinetic turbulence sometimes fail to
saturate at an experimentally-permissible level in the electromagnetic
regime; see, e.g., Pueschel et al. (2013); Giacomin et al. (2023).

▶ Not just a problem for STs; we are projected to have βe ≈ 2.5% in ITER,
where electromagnetic effects will be important.

▶ Key question:

Can we distil the essential physical ingredients behind
electromagnetic destabilisation by constructing simplified models?
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Local constant-curvature approximation

▶ These systems are incredibly complicated; what methods can we use to better
understand them?

▶ Tokamak instabilities are distinguished from other plasma instabilities by the
particular configuration of equilibrium gradients

▶ Consider a local “toy” model with radial equilibrium gradients that are
constant along the field line:

L−1
T = − 1

T0e

dT0e

dx
, L−1

B = − 1

B0

dB0

dx
.

5 / 16



Low-beta electron dynamics

▶ All that follows is derived in an asymptotic limit of gyrokinetics.

Equilibrium parameters:

Fields:

Frequencies:

Lengthscales: ρ−1
i ≲ k⊥ ∼ d−1

e ≪ ρ−1
e , k∥LT ∼

√
βe
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i ≲ k⊥ ∼ d−1

e ≪ ρ−1
e , k∥LT ∼

√
βe

▶ Low-beta limit orders out parallel (compressive) magnetic-field perturbations.
Not always a good approximation; e.g., in STEP (see Kennedy et al., 2024)

▶ Considering timescales comparable to the electron streaming rate; appropriate
for electron-scale instabilities.

▶ In a straight (unsheared) magnetic field, the flux-freezing scale
de = ρe/

√
βe demarcates the transition between the electrostatic and

electromagnetic regimes.
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Electrostatic regime

▶ At k⊥de ≫ 1, electrons are allowed to stream freely across unperturbed field
lines. Instabilities extract free energy from the ETG via the usual E ×B
feedback mechanism.

▶ For k∥ → 0, we recover the familiar curvature-mediated ETG (2D interchange
mode, Horton et al. 1988):

ω = ±i (2ωdeω∗eτ̄)
1/2 .
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Curvature-mediated ETG

d

dt

δne

n0e
= −ρevthe

LB

∂

∂y

δTe

T0e︸ ︷︷ ︸
Continuity

,
d

dt

δTe

T0e
= −ρevthe

2LT

∂φ

∂y︸ ︷︷ ︸
Temp. advection by E × B

,
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Curvature-mediated ETG

d

dt

δne

n0e
= −ρevthe

LB

∂

∂y

δTe

T0e︸ ︷︷ ︸
1○

,
d

dt

δTe

T0e
= −ρevthe

2LT

∂φ

∂y
,

x̂

ŷ
B0

∇T0e,∇B0Hot Cold

▶ A temperature perturbation with
ky ̸= 0 has alternating hot and cold
regions along ŷ.
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Curvature-mediated ETG

d

dt

δne
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∂
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d
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δTe

T0e
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2LT
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∂y︸ ︷︷ ︸
2○

,

x̂

ŷ
B0

∇T0e,∇B0Hot Cold

E

E

E

E vE

vE

vE

vE

▶ The electron density perturbation
creates, via a quasineutral
Boltzmann-ion response,
alternating electric fields E.

▶ Gives rise to an E ×B drift that
reinforces the initial perturbation.
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Electromagnetic regime

▶ Curvature-mediated thermo-Alfvénic instability (cTAI):

ω = ±i [2ωdeω∗e(1 + τ̄)]1/2 .

▶ Two key differences to cETG: (i) it relies on k∥ ̸= 0, and (ii) it does not
require the E ×B feedback mechanism to be unstable.
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Curvature-mediated TAI

d

dt

δne

n0e
= −ρevthe

LB

∂

∂y

δTe

T0e︸ ︷︷ ︸
Continuity

,
dA
dt

+
vthe
2

∂φ

∂z
=

vthe
2

∇∥
δne

n0e︸ ︷︷ ︸
Parallel pressure balance

, ∇∥
δTe

T0e
=

ρe
LT

∂A
∂y︸ ︷︷ ︸

Isothermality

,
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Curvature-mediated TAI

d

dt
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= −ρevthe
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T0e
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dt

+
vthe
2

∂φ

∂z
=

vthe
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δne

n0e
, ∇∥

δTe

T0e
=

ρe
LT

∂A
∂y︸ ︷︷ ︸

1○

,

x̂

ŷ

ẑ ∇T0e,∇B0Hot Cold

B0 + δB⊥

B0

δTe < 0

δTe > 0

δTe > 0

δTe < 0

▶ A perturbation δBx = B0ρe∂yA sets
up a variation of total temp. along
the perturbed field line as it makes
excursions into hot and cold
regions.

▶ Rapid thermal conduction along
field lines creates a temperature
perturbation that compensates for
this.
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▶ Velocity dependence of magnetic
drifts vde creates an electron
density perturbation (hot particles
drift faster than cold ones).

▶ This electron density perturbation
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Curvature-mediated TAI

d

dt

δne

n0e
= −ρevthe

LB

∂

∂y

δTe

T0e
,
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+
vthe
2

∂φ
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=
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δTe
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=
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LT
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,
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ŷ

ẑ ∇T0e,∇B0Hot Cold

B0 + δB⊥E∥

E∥

▶ The parallel density gradient must
be balanced by the parallel electric
field.

▶ Inductive part leads to an increase
in δBx, deforming the field line
further into the hot and cold
regions ⇒ feedback.
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Electron-scale instabilities: ETG and TAI

▶ Both the sTAI and cTAI exist in the collisionless (ν∗ → 0) and collisional
(ν∗ ≫ 1) limits, with the relevant parallel timescale being parallel streaming
and thermal conduction, respectively.

▶ The general physical mechanism is the competition between the diamagnetic
drifts and temperature equilibration along perturbed magnetic field lines ⇒
accessing the magnetic flutter drive.
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▶ Both the sTAI and cTAI exist in the collisionless (ν∗ → 0) and collisional
(ν∗ ≫ 1) limits, with the relevant parallel timescale being parallel streaming
and thermal conduction, respectively (see Adkins et al., 2022).

▶ The general physical mechanism behind the thermo-Alfvénic instability is
the competition between the diamagnetic drifts and temperature equilibration
along perturbed magnetic field lines ⇒ magnetic flutter drive.
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▶ Performed simulations of sTAI in GS2 and GENE. Adiabatic ions, βe = 0.09,
Lref/LT = 105, kmin
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Benchmarking against known results

▶ Performed simulations of sTAI in GS2 and GENE. Adiabatic ions, βe = 0.09,
Lref/LT = 105, kmin

∥ = 0.03
√
βe/LT .

▶ What about curvature? Both GS2 and GENE are able to recover cTAI in ŝ− α
geometry with q0 = 1, r/R = 10−8.

▶ Eigenfunctions: sTAI has odd (tearing) parity, while cTAI has even parity.
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Inching towards the torus

▶ Increase complexity further to better approximate a realistic tokamak:
magnetic shear + Shafranov shift.

ŝ =
r

q

dq

dr
, α = −R0q

2 8π

B2
0

dp

dr
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Inching towards the torus

▶ Increase complexity further to better approximate a realistic tokamak:
magnetic shear + Shafranov shift.

ŝ =
r

q

dq

dr
, α = −R0q

2 8π

B2
0

dp

dr

▶ It appears that the TAI instability mechanism appears to survive (some of)
the transition to toroidicity.
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Comparison with KBM and MTM

▶ Use “fingerprinting” to identify and class instabilities (see, e.g.,
Kotschenreuther et al., 2019)
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θ behaviour Extended Localised ? ?

χi/χe ≪ 1 ∼ 1 ? ?

De/χe ≪ 1 ≲ 1 ? ?
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Summary

▶ A comprehensive understanding of electromagnetic effects on the
microinstability properties of tokamak plasmas is becoming increasingly
important as experimental values of βs will be higher in reactor-relevant
tokamak scenarios.

▶ Complexity associated with full toroidal geometry makes progress difficult ⇒
consider simplified models.

▶ The novel thermo-Alfvénic instability (TAI) extracts free energy from
the equilibrium temperature gradient through finite perturbations to the
magnetic-field direction. Two branches, slab and curvature-driven, appear to
be distinct from the MTM and KBM.

▶ Future work: probing the robustness of its mapping from the toy model onto
the torus by introducing more physics, e.g., ions, finite shaping, low-aspect
ratio, etc.
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▶ Complexity associated with full toroidal geometry makes progress difficult ⇒
consider simplified models.

▶ The novel thermo-Alfvénic instability (TAI) extracts free energy from
the equilibrium temperature gradient through finite perturbations to the
magnetic-field direction. Two branches, slab and curvature-driven, appear to
be distinct from the MTM and KBM.

▶ Future work: probing the robustness of its mapping from the toy model onto
the torus by introducing more physics, e.g., ions, finite shaping, low-aspect
ratio, etc.

Thank you for listening.
Questions?
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